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A non-similar boundary layer theory for air blowing over a water layer on a flat plate 
is formulated and studied as a two-fluid problem in which the position of the interface 
is unknown. The problem is considered at large Reynolds number (based on x), away 
from the leading edge. We derive a simple non-similar analytic solution of the problem 
for which the interface height is proportional to x1I4 and the water and air flow satisfy 
the Blasius boundary layer equations, with a linear profile in the water and a Blasius 
profile in the air. Numerical studies of the initial value problem suggest that this 
asymptotic non-similar air-water boundary layer solution is a global attractor for all 
initial conditions. 

1. Introduction 
The effects of water layers driven over solid surfaces by wind are of interest in the 

performance of aircraft in rain, for the de-icing of airplane wings and surely in many 
other applications. Since such problems are intrinsically of a boundary layer type and 
since the more interesting phenomenon which might arise, like the formation of waves, 
film rupture and the like are probably best framed in terms of stability, it is necessary 
to derive the analytic forms that such flows will take when instability is neglected. 
This derivation is carried out here. 

Previous works related to the present one are by Yih (1990), who modelled the de- 
icing problem, and by Wang (1992), who considered the development of boundary 
layers in the shearing flow of one fluid over another. Both works are flawed by 
assuming rather than finding the shape of the interface. In the case treated by Wang, 
the interface is flat but the jump of the normal stress is not zero. Yih assumed that the 
flow in the air is a Blasius flow and the flow in the water is a simple shear. This is a 
correct form for the boundary layer, as we shall show, but he neglects the variation of 
film thickness with x and so cannot enforce the kinematic condition at the interface or 
find its shape. 

In this work, we formulate a non-similar boundary layer theory retaining all terms 
which decay slower than l/& [ = x( U/2v, x)l/ , ,  where v, is the kinematic viscosity of 
air. All of the interface conditions are enforced in this asymptotic regime. An effect of 
the small but non-zero vertical velocity component at the interface is to force the 
interface to grow like x1I4 when the boundary layer in the air grows like x”’. The 
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interface looks thin on the scale of the boundary layer. Asymptotically, at large x, the 
water and air satisfy the Blasius boundary layer equations with a linear profile in the 
water and the flat plate profile in the air. This non-similar (or coupled self-similar) 
solution appears to be a global attractor for all initial conditions. 

2. Governing equations 
A water film of height y = h(x) is flowing on a flat plate. Shear stress is exerted on 

the water by an air stream of velocity U flowing above the water layer, y > h(x).  The 
volume flow rate in the water layer is specified to be Q. We seek the nature of the flow 
under the circumstances which give rise to Blasius boundary layers in the flow of one 
fluid over a flat plate. This motivates the introduction of the same scales that are used 
in the classical case, giving 

where u =f’ = i3f/a7 is the x-component of velocity, v = rf‘-f-taf/ac is the y- 
component of velocity, 7 is the time, p is the pressure and f is the stream function. The 
parameters pz and v2 are for air; subscript 1 is for water. 

These scales are introduced into the Navier-Stokes equations which are written below 
in the new dimensionless variables without approximation. The continuity equation 
becomes 

[.(k(!$+g)g+;( 1 -;(f+g))(~-+v-&g+-&))] = 0. (7) 
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The jump in the normal stress is balanced by interfacial tension, 
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where G = (g/u2)(2v2 X / U ) ~ / ~ ,  g is the acceleration due to gravity, S = T/(v,p, U ) ,  and 
T is the coefficient of surface tension. We note here that in the above equations p is the 
dynamic pressure. Density and viscosity are normalized by the corresponding 
properties of the air 

815.6, 0 < 7 < 7* 
(9) 7* < 7, 

p, = 64.01, 0 < 7 < 7* 
LL = {;,’ 7* < 7, 

and v = p/p.  The kinematic equation of the free surface is written in the boundary 

Equations (2)-( 1 1) are a consistent non-dimensional set of equations which govern the 
flow in the air and the water. We note that the value the dimensionless kinematic 
viscosity takes in the water layer, v = vl/v?, is small, and the values that the non- 
dimensional density and non-dimensional viscosity take in the water layer are large. 
Our analysis however applies to any two fluids and does not make use of simplifications 
which might arise from small parameters. We have phrased the analysis in terms of air 
and water because we have aerodynamic applications in mind. 

3. Non-similar boundary layers 
We shall show later that the asymptotic solution for large 5 is similar, but not in the 

usual sense. We are motivated to see if this solution can be embedded in a large class 
of non-similar solutions for large 5 (large Reynolds number Ux/2v2) and to investigate 
the possibility that the asymptotic solution enjoys a special status as a global attractor 
for all solutions of this non-similar family. 

Self-similar boundary layers depend only on 7 and not on 5. The &derivatives of u, 
v and 7* may be small, of the order of t-”, n 2 1, when t is large. We retain those terms 
in each equation which are 0(1), dropping all terms of O(t-”). For this computation 
we assumed that the first derivative of u with respect to t scales with ti1, the second 
derivative with tL2 and aT*/at with tL3l2. These scalings can be verified in 96 a 
uosteriori. We find that 

holds in the air and water, and at 7 = 7* 
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Equation (12) can be found in Schlichting (1987, pp. 187-191). We may remark that 
the contributions of the viscous terms in the normal stress balance are 6-2 times the 
terms retained and the surface tension terms are S3 times those retained. We should 
emphasize that no thin layer assumption is made in this analysis. The results hold 
uniformly for all prescribed values of flux of water. 

Equations (12) and (13) are valid approximations to the system given by (2F(ll)  
when 6 is large enough. We are at present preparing numerical simulations using the 
full Navier-Stokes equations to determine how large 6 must be in order for (12) and 
(13) to be valid. 

4. Asymptotic solution for large 6 
Here we give a special solution of our coupled air-water system which will be shown 

later to be a global attractor of non-similar boundary layer solutions. This special 
solution is such that for large x (large 6 )  the horizontal velocity component in the water 
is linear in y ,  the interface position y* --f 0, and there is a similarity solution in the air 
withf(0) = f ( O )  = 0, andf(0) is constant. In the air we write 

u = f ’ ( ~ ) ,  y = ky/x’ /2 ,  
and in the water 

u = c(x)  y ,  Q = udy = &(x) h2 = constant. 

We will show this solution is similar, i.e. satisfies the Blasius equation f’+ uf’ = 0. 
First we shall show that the continuity of the shear stress across the interface y* 

implies that c(x)  = with A a constant, so that u = A y  can be expressed in terms 
of 7 alone. The interface is on y = h(x),  y = y* = khx-’I2. The shear stress is 
continuous : 

Hence 

In our solution y* = h(x)/x’I2 + 0, so that f”(r*) + f ( O )  which is constant and non- 
zero. Then 

Using (15), we may write 
def 

h - - X  2 - 2Q 112 - - BZx1/2 
A 

h = Bx1I4. 
Using (20), we find that 

which is consistent with our solution statement. 
The boundary conditions at the wall, 7 = 0, and (21) imply that 

JTy*)+JTO) = 0 as <+ 00, 

f’(y*) +f(O) = 0 as 6 + co. 
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The boundary conditions in the air have become the same as those for the Blasius 
solution for a boundary layer over a flat plate. Thus our initial solution in the air is 
realized, with f”(q*) +f”(O) = constant. 

The flow in the water also satisfies the Blasius equation because the water layer in 
the non-dimensional coordinates is thin, 7* + 0, even though the dimensional interface 
position h(x) + 00 as x + 00. The flow in the water may be described as a low Reynolds 
number flow, i.e. a local Reynolds number may be defined to be 

Hence inertia effects are negligible. This is true even though the flow rate of water, Q, 
is a prescribed constant, and the inertia in the air is sensible. 

5. Solutions of initial value problems for the non-similar two-fluid 
boundary layer equation 

5.1. Evolution of a proJle which is initially parabolic in segments 
We now turn to numerical solutions of (12) and (13). Since the non-similar solutions 
depend on 5, we are obliged to consider the evolution of flows prescribed at some initial 
position 5 = to, i.e. fo(7) =A7, 6 = to), 7; = 7*(( = to). Note that by fixing fo(7) and 7; 
we have fixed the flux of water Q = ( ~ V , X U ) ’ / ~ J T ~ * ) ,  where by continuity Q is a 
constant which is prescribed. Fortunately our simulations of those initial value 
problems indicate a rapid decay from initial values to the asymptotic solution described 
in $4. This situation is not unfamiliar. In the classical theory of boundary layers, the 
Blasius solution (the similarity solution) is a global attractor for all initial value 
problems which are not similar (see Serrin 1967). In our case the attractor cannot be 
self-similar, but the non-similar solution of $4 arises asymptotically, for large t from 
all initial conditions explored. The first initial condition we used to solve (12) and (13) 
is plotted in figure 1 .  For this initial condition 7* = 0.15 and to = 50. These values were 
chosen to be representative of conditions discussed by Hastings & Manuel (1985), in 
which they describe the results of their wind tunnel measurements of a wing in 
simulated rain. In the above profile, for 0 < 7 < y*, f’ is parabolic with f”’ being 
positive. For 7* < 7 < 3.5,f is parabolic withf”’ being negative. For 7 > 3.5,f’ = 1.0. 

We solved (12) and (1 3) subject to the above initial conditions for 6 > to using a finite 
difference scheme found in Schlichting (1987, pp. 187-191). This scheme is iterative 
using second-order differencing for the 7-derivatives, and a first-order implicit Euler 
differencing for the &derivatives. In order to parametrize the interface shape which we 
calculated with the above method, we assumed an interface 7* = a p ,  where a = 
q * ( ~ o ) / @ o ) ,  and found the n(6) given in figure 2. 

The exponent function n(Q decays rapidly to - 1/2, corresponding to a limiting 
power law h(x) K x114 of the interface height as given by the asymptotic solution shown 
in figure 1 .  For 6 not much larger than to the horizontal velocity componentf becomes 
linear in 7,f’ = ~ ( 9 7 ,  in the water layer and remains so for all greater [. The shear 
stress in the water, (p1/,u2)c, is directly related to the shear stress in the air at the 
interface through the tangential stress condition found in (13). From our calculations 
we find that the shear stress in the air at the interface,?, asymptotically tends to the 
shear stress in the Blasius boundary layer of a single fluid over a flat plate at the plate 
surface, as shown in figure 3. 

Notice that the exponent function n(Q tends to its asymptotic value extremely 
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FIGURE 1. Parabolic initial condition assumed for the horizontal velocity component f' with 
T* = 0.15 and & = : 

0 

(a) Initial condition. (b)  Detailed plot of initial condition at the interface. 
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FIGURE 2. Plot of n for the non-similar boundary layer with initial conditions from figure 1. 

rapidly, while the shear stress at the interface in the a i r y  has a much slower decay. The 
reason for this difference is that the horizontal velocity component in the water 
becomes linear, and thus n(Q becomes nearly - 1/2, for not very much greater than 
go. Figure 3 shows that the flow has not yet reached its asymptotic form, since the shear 
stress at the interface in the air is appreciably different from its asymptotic value. The 
flow then slowly tends to its asymptotic state. The flow is non-similar for finite 6 
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f ' (x102) 5 
FIGURE 3. (a) Detailed plot of boundary layer solution in the water layer at 6 = 50.0675 for the 

initial conditions of figure 1 .  (b) Shear stress, f", in the air at the interface, q* = up@,  for 6 > to. 
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f' 
FIGURE 4. Initial profile in the water at 6 = 6,. The profile in the air is shown in figure 1 (a). 

because the boundary layer height and the interface do not scale the same. 
Asymptotically one may say that the flow is similar because 7* goes to zero and the 
flow in the air is the self-similar Blasius profile. 

5.2. Evolution of another projile which is initially parabolic in segments 
In the next example we used the same initial value for 7" and the same initialf(7) for 
7 > r* as in figure 1 (a),  but the profile shown in figure 1 (b)  was replaced with the one 
shown in figure 4. 

In figure 5 we show the evolution of the exponent n(Q for 6 > E,, for the above initial 
condition. Again n(Q -+ - 1/2 for large 6 and 7" = for large [. The solution given 
in $4 is attained asymptotically. Although not plotted here,p(r*) again exhibits a slow 
relaxation to its asymptotic value. 
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5.3. Evolution of a projile which is initially in similarity form but with 
a*([,,) = 0.15 > 0 

The initial condition shown in figure 6 is generated from (12) and (13) when the [- 
derivatives are set to zero, so that 

ff”+vf”’= 0, (25) 
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FIGURE 7. Exponent function n(LJ for ?I* = ar(O for the initial conditions of figure 6 .  

and at 7 = q* 

In the following computations, the initial value of q* was chosen to be the same as that 
given in figure 1 (b). This system is solved using an iterative finite difference scheme using 
second-order differencing and gives rise to the profiles shown in figure 6. 

The profiles in figure 6 were used for initial values in the non-similar equations (12) 
and (13) and they evolved to the coupled self-similar solutions described in $4 in which 
r*(onO. The difference between the solution in the air and the classical Blasius flat 
plate solution also tends to zero. A graph of the exponent function for this example is 
shown in figure 7. 

In these examples and in all the others, which we tried but are not shown, the 
asymptotic solution given in $4 is ultimately attained. 

6. Behaviour of [-derivatives of the non-similar solution 
In deriving the system which lead to the above solutions, we assumed that first and 

second derivatives of u and 7* with respect to 6 were inversely proportional to (--n, 
n 2 1. From our solution we find that aq*/at scales like 53/2 and a2q*/aEz scales like 
[-5/2, in agreement with our scalings. Since 6 scales with x " ~ ,  the interface position 
scales with x1I4. 

In order to examine the &derivatives of u, we define two functions: 

4(7, 6 )  = 6iY/a6? (27) 
G(% 6 )  = P ~"f'/a%. (28) 
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FIGURE 8. Plot of <(v, 6) and F,(vQ versus 7 for 6 = 50.01 for the flow plotted in figure 6. 
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FIGURE 9. Plot of 4(v, 6) and F,(v, Q versus 7 for 6 = 129.1 for the flow plotted in figure 6. 

Depending upon the initial conditions chosen at to, F,(q,g0) and F,(q,to) may be 
extremely large. However, for larger values of f; the horizontal velocity component in 
the water becomes linear in 7, n(LJ tends to - 1/2 and &(q, f ; )  < l,F,(q, t )  < 1 (see 
figure 8). 141 and IF,I decrease, as shown in figure 9, although the decrease in 141 is very 
small. Then since & and F, are both 0(1), the assumptions that were made in deriving 
(12) and (13) are shown to hold. Also, since as ,&+ co, q* + O  and the flow in the air goes 
to the Blasius boundary, both 4 + 0 and F, --f 0 as ,&+ co . 

7. Concluding remarks 
The analysis given in this paper can be extended to two-fluid boundary layer 

problems with other free streams, say U = U,  x n .  It is also probable that the solution 
given in $4 and the other limiting solutions to which we have just alluded are unique 
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large-x limits of steady coupled air-water solutions of the Navier-Stokes equations 
with different initial profiles at x = x,. 
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